
G
a
m
i
n
g

A
s
s
o
c
i
a
t
e
s

COMMERCIAL – IN – CONFIDENCE

COMMERCIAL – IN – CONFIDENCE Page 1 of 18

© GAMING ASSOCIATES 2023-02-23

Certification Report: Metagalactic Club NV RNG Evaluation

Report Identification: MLC-CR-230223-01-RC-R1

Certification Laboratory:

Supervisor: Usman Vaseer

Signatures:

Certifier: Wajahat kashan

Dates of certification work: 01 February 2023 to 17 February 2023

Date of issue of certification

report:

23 February 2023

Report prepared for: Metagalactic Club NV

Abraham de Veerstraat 9,

Willemstad, P.O. Box 3421,

Curaçao

Jurisdiction: Curaçao eGaming

Technical Standard used for

testing:

UK Remote Gambling and Software Technical
Standards, February 2021

Certified RNG using Javascript for Gambling related Games

Installation

npm install xorshift

Example

var xorshift = require('xorshift');

for (var i = 0; i < 10; i++) {
console.log(xorshift.random()); // number in range [0, 1)

}

Documentation

This module exports a default pseudo random generator. This generators seed have already been

set (using Date.now()). If this is not suitable a custom generator can be initialized using the

constructor function xorshift.constructor. In both cases random numbers can be generated using

the two methods .random and .randomint.

var xorshift = require('xorshift');

xorshift.random()
This method returns a random 64-bit double, with its value in the range [0, 1). That means 0 is

inclusive and 1 is exclusive. This is equivalent to Math.random().

console.log(xorshift.random()); // number between 0 and 1

This method will serve most purposes, for instance to randomly select between 2, 3 and 4, this

function can be used:

function uniformint(a, b) {
return Math.floor(a + xorshift().random() * (b - a));

}

console.log(uniformint(2, 4));

xorshift.randomint()
This method returns a random 64-bit integer. Since JavaScript doesn't support 64-bit integers, the

number is represented as an array with two elements in big-endian order.

This method is useful if high precision is required, the xorshift.random() method won't allow you to

get this precision since a 64-bit IEEE754 double only contains the 52 most significant bits.

var bview = require('binary-view');
console.log(bview(new Uint32Array(xorshift.randomint())));

xorshift.constructor
This method is used to construct a new random generator, with a specific seed. This is useful when

testing software where random numbers are involved and getting consistent results is important.

var XorShift = require('xorshift').constructor;
var rng1 = new XorShift([1, 0, 2, 0]);
var rng2 = new XorShift([1, 0, 2, 0]);

assert(rng1.random() === rng2.random());

A XorShift instance have both methods random and randomint. In fact the xorshift module is an

instance of the XorShift constructor.

Reference

This module implements the xorshift128+ pseudo random number generator.

This is the fastest generator passing BigCrush without systematic errors, but due to the relatively

short period it is acceptable only for applications with a very mild amount of parallelism; otherwise,

use a xorshift1024* generator. – http://xorshift.di.unimi.it

This source also has a reference implementation for the xorshift128+ generator. A wrapper around

this implementation has been created and is used for testing this module. To compile and run it:

gcc -O2 reference.c -o reference
./reference <numbers> <seed0> <seed1>

● <numbers> can be any number greater than zero, and it will be the number of random
numbers written to stdout. The default value is 10.

● <seed0> and <seed1> forms the 128bit seed that the algorithm uses. Default is [1, 2].

http://xorshift.di.unimi.it/
http://xorshift.di.unimi.it/xorshift128plus.c

	MLC-CR-230223-01-RC-R1MetagalacticClubNVEvaluationReport.pdf
	CertifiedRNGusingJavascriptforGamblingrelatedGames1.pdf

