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Certified RNG using Javascript for Gambling related Games

Installation

npm install xorshift

Example

var xorshift = require('xorshift');

for (var i = 0; 1 < 10; 1i++) {
console.log(xorshift.random()); // number in range [0, 1)

}

Documentation

This module exports a default pseudo random generator. This generators seed have already been
set (using pate.now () ). If this is not suitable a custom generator can be initialized using the
constructor function xorshift.constructor. In both cases random numbers can be generated using

the two methods .random and .randomint.
var xorshift = require('xorshift');

xorshift.random()
This method returns a random 64-bit double, with its value in the range [0, 1). That means 0 is

inclusive and 1 is exclusive. This is equivalent to Math.random ().
console.log(xorshift.random()); // number between 0 and 1

This method will serve most purposes, for instance to randomly select between 2, 3 and 4, this

function can be used:

function uniformint (a, b) {
return Math.floor (a + xorshift().random() * (b - a));

}

console.log (uniformint (2, 4));



xorshift.randomint()
This method returns a random 64-bit integer. Since JavaScript doesn't support 64-bit integers, the

number is represented as an array with two elements in big-endian order.

This method is useful if high precision is required, the xorshift.random() method won't allow you to

get this precision since a 64-bit IEEE754 double only contains the 52 most significant bits.

var bview = require('binary-view');
console.log(bview( new Uint32Array(xorshift.randomint()) ));

xorshift.constructor
This method is used to construct a new random generator, with a specific seed. This is useful when

testing software where random numbers are involved and getting consistent results is important.

var XorShift = require('xorshift').constructor;
var rngl = new XorShift([l, 0, 2, 0]);
var rng2 = new XorShift([l, 0, 2, 0]);

assert (rngl.random() === rng2.random()) ;

A xorshift instance have both methods random and randomint. In fact the xorshift module is an

instance of the xorshift constructor.

Reference

This module implements the xorshift128+ pseudo random number generator.

This is the fastest generator passing BigCrush without systematic errors, but due to the relatively
short period it is acceptable only for applications with a very mild amount of parallelism; otherwise,

use a xorshift1024* generator. — http://xorshift.di.unimi.it

This source also has a reference implementation for the xorshift128+ generator. A wrapper around

this implementation has been created and is used for testing this module. To compile and run it:

gcc -02 reference.c -o reference
./reference <numbers> <seed0> <seedl>

e <numbers> can be any number greater than zero, and it will be the number of random

numbers written to stdout. The default value is 10.
<seed0> and <seed1> forms the 128bit seed that the algorithm uses. Default is (1, 2].


http://xorshift.di.unimi.it/
http://xorshift.di.unimi.it/xorshift128plus.c
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